Física y Química 2ºESO (también 3º y 4º ESO, repaso) Límites de la Física

J. F. G. H.¹

¹Space-time Foundation, Multiverse of Madness Quantum TimeLord Virtual Academy

> Earth planet Milky Way Galaxy Known Universe Joki Multiverse

Principio de equivalencia de Galileo

Principio de equivalencia

En principio, no debería ser "igual" la masa de la segunda ley de Newton, masa inercial, y la masa de la fuerza del peso, llamada masa gravitacional (pasiva). La igualdad de esas masas es un fenómeno llamado **principio de equivalencia**, y le llevó a Albert Einstein a formular una nueva teoría gravitacional relativista, llamada relatividad general. Matemáticamente:

$$m_I = m_G^A = m_G^P$$

La masa gravitacional activa es la masa del campo fuente de la gravedad.

Unidades grandes de energía:

- *GeV*, *TeV*, *PeV*, . . .
- 1 FOE= 10^{51} erg = 10^{44} J.
- 1 kWh=3.6MJ.

3/19

Límite de temperatura superior

La temperatura más alta posible es la llamada temperatura de Planck:

$$T_P = \Theta_P = \frac{E_P}{k_B} = \frac{1}{k_B} \sqrt{\frac{\hbar c^5}{G}} = \sqrt{\frac{\hbar c^5}{k_B^2 G}} \sim 10^{32} K$$

A esta temperatura, se disuelve y desaparece incluso el propio espacio-tiempo y aparecerán sus posibles constituyentes fundamentales, sean los que sean.

Límites de otras magnitudes

Límite del espacio inferior: Longitud de Planck.

$$L \geq L_P = \sqrt{\frac{G\hbar}{c^3}} \sim 10^{-35} m.$$

- Límite del espacio superior: longitud de Hubble o radio de De Sitter. $L \le R_U = \frac{c}{H} \sim 10^{27} m$.
- Límite de tiempo inferior: Tiempo de Planck.

$$t \geq t_p = \frac{L_P}{c} = \sqrt{\frac{G\hbar}{c^5}} \sim 10^{-43} \mathrm{s}.$$

- Límite de velocidad superior: velocidad de la luz. $v \le c = 3 \cdot 10^8 m/s$.
- Temperatura inferior (cero absoluto imposible):

$$\Theta_q \ge \frac{\hbar c}{k_B R} = \frac{m \gamma c^2}{k_B}$$

Otros límites(I)

• Límite de masa (energía) superior: masa universal.

$$M \le M_U = \frac{c^3}{2GH} \sim 10^{53} kg. \ E_U = M_U c^2 = \frac{c^5}{2GH}.$$

• Límite de masa (energía) inferior: masa de Planck.

$$M \geq M_P = \sqrt{\frac{\hbar c}{G}}$$
. $E_P = M_P c^2 = \sqrt{\frac{\hbar c^5}{G}}$.

6/19

Otros límites(II)

Aceleración: aceleración de Planck.

$$a_p = \sqrt{\frac{c^7}{G\hbar}} \sim 10^{52} m/s^2.$$

Aceleración: aceleración de Caianiello.

$$A=a_c=\frac{mc^3}{\hbar}.$$

 Campo eléctrico y gravitacional de Schwinger (creación de partículas del vacío por pura energía):

$$E_c=rac{m^2c^3}{a\hbar},~~g_c=rac{mc^3}{\hbar}$$

Para electrones: $E_c \sim 10^{18} \text{ V} \cdot \text{m}, g_c \sim 10^{29} \text{m/s}^2$.

Para protones: $E_c \sim 10^{24} V \cdot m$, $g_c \sim 10^{32} m/s_{-}^2$.

Semejanzas matemáticas

- Ley de gravitación universal: $F = G \frac{Mm}{r^2}$.
- Ley de Coulomb de la electrostática: $F = K_C \frac{Qq}{r^2}$.
- Ley de Ampère de las corrientes eléctricas y fuerzas magnéticas: $F_m = \overline{K_m} \frac{p_1 p_2}{r^2}$.

$$\frac{F_m}{L} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{r}$$

$$\vec{F}_{m} = K \int I d\vec{l} \times \int \frac{I' d\vec{l'} \times \vec{u}_{r}}{r^{2}} = K_{m} \frac{II' L_{1} L_{2}}{r^{2}}.$$

• Fuerza electromagnética:

$$ec{F} = ec{F}_e + ec{F}_m = q \Big(ec{E} + ec{v} imes ec{B} \Big) = q ec{E} + I ec{L} imes ec{B}$$

Potencial de Yukawa:

$$V_Y = -g^2 \frac{e^{-r/r_0}}{r}.$$

• Fuerza de Yukawa:

$$F_{Y} = -g^{2} \frac{e^{-r/r_{0}}}{r^{2}} \left(1 + \frac{r}{r_{0}}\right)$$

Fuerza y potencia límites

Fuerza de Planck

$$F_P = m_P a_P = \frac{c^4}{G} \simeq 10^{44} N$$

Potencia de Planck

$$P = F_P v_P = F_P c = \frac{c^5}{G} \simeq 10^{52} W$$

Autor (JFGH) Wultiverse of Madness 10/19

Densidad de masa y energía límites

Densidad de masa de Planck

$$\rho_P(M) = \frac{M_P}{V_P} = \frac{c^5}{\hbar G^2} \sim 10^{97} kg/m^3$$

Densidad de energía de Planck

$$\rho_P(E) = \rho_P(M)c^2 = \frac{c^7}{\hbar G^2} \sim 10^{114} \text{J/m}^3$$

Densidad de energía del vacío(I)

También llamada constante cosmológica, el vacío puede tener una densidad de energía igual a la cantidad:

$$\rho_{\Lambda}(E) = -\frac{\Lambda c^4}{8\pi G}$$

o una densidad de masa igual a

$$\rho_{\Lambda}(E) = -\frac{\Lambda c^2}{8\pi G}$$

La fuerza de repulsión cósmica asociada sería $F_{\lambda}=+\Lambda c^2R=k_{\lambda}R.$ También puede entenderse como una presión:

$$\rho_{\Lambda}(E) \sim \frac{F}{S} = \frac{FD}{SD} = \frac{E}{V}$$

Densidad de energía del vacío(I)

En términos cosmológicos, se define el parámetro omega y la quintaesencia Q:

$$\omega = \frac{P}{\rho} = \frac{\frac{1}{2}\dot{Q}^2 - V(Q)}{\frac{1}{2}\dot{Q} + V(Q)} = \frac{L/m}{H/m} = \frac{L}{H}$$

Si $\dot{Q} = V = 0$, entonces $\rho_{\lambda}(E) = -1$ y tenemos densidad de energía del vacío constante, o energía oscura o presión del espacio vacío.

◆□▶◆□▶◆壹▶◆壹▶ 壹 りQ⊙

Casos cuánticos de quintaesencia

- -1 < ω < 0. Campo dinámico quintaesencia (escalar, vectorial, k-forma,...).
- $\omega = -1$. Energía oscura o constante cosmológica. Propuesta inicialmente por Einstein para tener un Universe estático.
- Energía fantasma $\omega < -1$. La densidad aumentaría con la expansión cósmica. Eso implicaría un Big Rip del Universo.

El tiempo que tardaría en ocurrir el Big Rip es:

$$t_{BR} - t_0 = \frac{2}{3|1 + \omega|} \frac{1}{H_0} \frac{1}{\sqrt{1 - \Omega_m}}$$

El Big Rig destrozaría galaxias, átomos, núcleos, partículas subatómicas y toda la realidad. Pero no está claro qué pasaría y si destrozaría toda partícula.

Especulaciones modernas(I)

- Gravitación cuántica.
- Destino final del Universo (espacio-tiempo, agujeros negros, singularidades espacio-temporales,...)
- Principio holográfico:

$$S(BH) = \frac{k_B A}{4L_p^2} = \frac{k_B c^3 A}{4G\hbar}$$

- Principio de Landauer: $E \ge k_B \ln(2)$.
- Cota de Bekenstein:

$$S \le \frac{2\pi k_B ER}{\hbar c}$$
 $I \le \frac{2\pi RE}{\hbar c}$ nats $= \frac{2\pi RE}{\hbar c \ln 2}$ bits

Especulaciones modernas(II)

Teorema de Margolus-Levitin:

$$t_{op} \geq \frac{h}{4E_{\perp}}$$

- Límite de Bremermann: $\Delta t = \frac{\pi \hbar}{2\Delta E}$.
- Computación e información cuántica.
- Entralazamiento cuántico y gravedad.
- Límites de la Mecánica Cuántica(Problemas de la medidad y de la información).
- Problema del tiempo y su direccionalidad. ¿Hay una única dirección o flecha del tiempo?¿Dos o tres?¿Infinitas?¿Existe el tiempo?

Especulaciones modernas(III)

- Dualidades (AdS/CFT, Kerr/CFT, ER=EPR, YM² = Gravity).
- Modelos (teorías) de (super)cuerdas y p-branas.
- El Multiverso.
- La contextualidad de la Mecánica Cuántica y las teorías subcuánticas o de variables ocultas.
- La dimensionalidad del espacio-tiempo.
- Estructura numérica subyacente a la realidad.
- La relatividad de la realidad.
- . . .

¡Hay mucho que aprender y entender aún! Como las singularidades del espacio y el tiempo....

Gracias por vuestra atención



Figura 1: Loki is pleased!

Figura 2: Sylvie is pleased!

19/19