Some aspects of neutrino phenomenology

Juan F. González Hernández

2 Neutrinos

- 3 ν -N cross-sections in the SM
- 4 Neutrino Oscillations

5 $\beta\beta$ decay

6 CONCLUSIONS

白 ト イヨト イヨト

2 Neutrinos

- 3 ν -N cross-sections in the SM
- 4 Neutrino Oscillations
- **5** $\beta\beta$ decay
- 6 CONCLUSIONS

(人間) (人) (人) (人) (人)

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Some unanswered questions on neutrinos

- Are neutrinos Majorana particles? $\nu = \bar{\nu}$? ν spinor unknown!
- The neutrino spectrum: Hierarchical or degenerate? Normal/Inverted?
- Are there sterile neutrinos? How many $(1, 2, \dots, \infty)$?
- Why $m_{\nu} \ll m_{lep,q}$?
- Is there \mathcal{CP} in the leptonic sector?
- What is θ_{13} ? Is it non-zero?
- Can we observe the COH el. νN scattering ? And the $C\nu B?$
- Why are V_{CKM} and U_{PMNS} so different?
- Can we detect ultra high-energy cosmic neutrinos?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Why νN scattering and ν phenomenology?

- σ_{ν} for νN scatterings are not so precisely known as for leptonic reactions. Cause: nuclear form factors.
- νN interactions are essential to determine the Majorana or Dirac character of neutrinos via $\beta\beta$ decay.
- νN interactions and the SM framework. νN are SM tests. New physics?
- Some νN are found to be the important background events involved in DM experiments.
- Neutrino mixing(m_ν ≠ 0!)⇒ ∃ New Physics! Current and future high statistics measurements of oscillation parameters.

(1) マン・ション・

- 3 ν -N cross-sections in the SM
- 4 Neutrino Oscillations
- **5** $\beta\beta$ decay
- 6 CONCLUSIONS

(人間) (人) (人) (人) (人)

We find neutrinos everywhere...

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Some neutrino estimates and numbers

- From current cosmological theories: $n_{\nu} \approx 330 \text{cm}^{-3} = 330 \cdot 10^6 \text{m}^{-3}$. Compare with $n_p \sim 0.5 \text{m}^{-3}$ and $n_{\gamma} \approx 411 \cdot 10^6 \text{m}^{-3}$. $n_{\nu}/n_p \sim 10^9$, $n_{\gamma}/n_{\nu} \sim 1.2$
- How many neutrino interactions coming, e.g. from atmospheric neutrinos are we going to expect in our time-life?

$$\sigma \sim 10^{-38} {
m cm}^2 \cdot E_{
u}({
m GeV})$$

then, since the neutrino flux around 1 GeV is isotropic about 1 neutrino per square centimer per second, we get

$$\frac{1\nu}{\mathrm{cm}^2 s} \frac{10^{-38} \mathrm{cm}^2}{N} \frac{6 \cdot 10^{32} N}{kT} \frac{3 \cdot 10^7 \mathrm{s}}{\mathrm{yr}} \frac{75 \mathrm{yr}(\mathrm{hum})}{\mathrm{life}} \frac{70 \mathrm{kg}}{(\mathrm{hum})} \sim 1\nu \frac{\mathrm{int.}}{\mathrm{hum}}$$

The most elaborated theory of subatomic particles. Recipe:

- Electroweak theory: Local Gauge Group $SU(2)_L \times U(1)_Y$ invariance(massless fields)
- Unified weak and electromagnetic forces through W^{\pm}, Z, γ bosons.
- SSB and Higgs mechanism to generate mass of gauge bosons and fermions.(Higgs particle still missing)
- QCD lagrangian and V-A lagrangian (CC/NC) to describe, e.g., β decay of nuclei, μ decay, π decay,...

・ロン ・聞と ・ほと ・ほと

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS SM spectrum and the unknown ν absolute mass scale(I)

Э

Then, we have to hunt the neutrino masses YET! (Not only the Higgs mass is unknown, provided it exists at Nature!)

向下 イヨト イヨト

- 3 ν -N cross-sections in the SM
- 4 Neutrino Oscillations
- **5** $\beta\beta$ decay
- 6 CONCLUSIONS

(1日) (日) (日)

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Why cross-sections? 1911 vs. 2011, α^{2+} vs. ν probes

$N_{\nu}(E) \sim \epsilon \phi_{\nu}(E) \sigma_{\nu}(E)$

Juan F. González Hernández

Some aspects of neutrino phenomenology

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS General background: SM interactions ν N

The SM establishes 4 kind of interactions ν N, CC and NC.

- Quasielastic/Elastic scattering (CCQE/NCE). $E \sim 100$ MeV to $E \sim 1$ GeV. CC: $\nu_l + n \rightarrow p^+ + l^-$. NC: $\nu + N \rightarrow \nu + N$
- Resonant channel scattering (mainly one pion, Δ barion,...). $E \sim 100$ MeV to $E \sim 1$ GeV
- CC/NC Deep Inelastic scattering. E ~ 100MeV to E ~ 100GeV. Dominant at high energies. Based on the parton model. Cross sections are proportional to the parton distribution functions(PDFs).
- Coherent scattering ν N. Diffractive process. ν N as a whole. Low energy, less than $E \sim 100$ MeV.

・ 同 ト ・ ヨ ト ・ ヨ ト

Index Motivations Neutrinos ν-N cross-sections in the SM Neutrino Oscillations ββ decay CONCLUSIONS Feynman graph(I): Quasilastic and Elastic

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Feynman graph(II): DIS

イロン 不同と 不同と 不同と

Э

Feynman graph(III): NC Resonant and Coherent scattering

Neutrino Oscillations

 $\beta\beta$ decay

イロト イヨト イヨト イヨト

CONCLUSIONS

æ

 ν -N cross-sections in the SM

Motivations

Neutrinos

Index

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS CCQE cross-section

CCQE

$$\frac{d\sigma_{CC}^{\nu_l n, \bar{\nu}_l p}}{dQ^2} = \frac{G_F^2 m_N^4}{8\pi E_\nu^2} \left[A(Q^2) \pm B(Q^2) \frac{(s-u)}{m_N^2} + C(Q^2) \frac{(s-u)^2}{m_N^4} \right]$$

Put it in numbers:

CCQE in numbers

$$\sigma_{\textit{CC}}^{\nu_l n, \bar{\nu}_l \rho} \simeq 1.601 \times 10^{-44} \left(1 + 3g_{\textit{A}}^2\right) \left(\frac{\textit{E}_{\nu}}{\textrm{MeV}}\right)^2 \textrm{cm}^2$$

・ロン ・回 と ・ ヨン ・ ヨン

Э

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS

NCE cross-section

NCE

$$\frac{d\sigma_{CC}^{\nu_l N, \bar{\nu}_l N}}{dQ^2} = \frac{G_F^2 m_N^4}{8\pi E_{\nu}^2} \left[A_N(Q^2) \pm B_N(Q^2) \frac{s-u}{m_N^2} + C_N(Q^2) \frac{(s-u)^2}{m_N^4} \right]$$

Put it in numbers:

NCE in numbers

$$\begin{split} \sigma_{NC}^{\nu_l \rho, \bar{\nu}_l \rho} \simeq \frac{G_F^2}{4\pi} \left[\left(1 - 4 \sin_w^2 \right)^2 + 3g_A^2 \right] E_\nu^2 &\approx 6.0 \cdot 10^{-46} \text{ cm}^2 \frac{E_\nu^2}{\text{MeV}^2} \\ \sigma_{NC}^{\nu_l n, \bar{\nu}_l n} \simeq \frac{G_F^2}{4\pi} \left[1 + 3g_A^2 \right] E_\nu^2 &\approx 9.3 \cdot 10^{-44} \text{ cm}^2 \frac{E_\nu^2}{\text{MeV}^2} \end{split}$$

Juan F. González Hernández

Some aspects of neutrino phenomenology

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS What are $A(Q^2), B(Q^2), C(Q^2), g_A, \ldots$?

Answer: certain "complicated" functions depending on

$$F_1(Q^2) = \frac{1 + \tau(1 + \mu_p - \mu_n)}{(1 + \tau)\left(1 + \frac{Q^2}{M_V^2}\right)^2} \quad F_2(Q^2) = \frac{(\mu_p - \mu_n)}{(1 + \tau)\left(1 + \frac{Q^2}{M_V^2}\right)^2}$$

$$G_A(Q^2) = rac{g_A}{\left(1+rac{Q^2}{M_A^2}
ight)^2} \quad G_P(Q^2) = rac{2m_N^2}{M_\pi^2+Q^2}G_A \ \ au = Q^2/4m_N^2$$

Here, $g_A = -1.25$, $M_V = 0.84$ GeV is the vector mass and $M_A = 1.03$ is the axial mass, M_{π} is the pion mass and μ_p, μ_n are the anomalous magnetic moments for the proton and the neutron.

• • = • • = • = •

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Resonant ν N cross-section: the Rein-Sehgal model

It describes $\nu,\bar{\nu}$ induced pion processes using one unified formalism. All non-strange resonant states below 2 GeV (18 resonances, usually the Δ exchange being the dominant mode) are combined, even interference terms, to produce the single pion channels. In addition, a small isospin 1/2 non-resonant background is generally added incoherently to improve the agreement with data.

Resonant RS CS

$$\frac{\partial \sigma}{\partial Q^2 \partial E_q} = \frac{1}{128\pi^2} \sum_{spins} |T(\nu N \to I N^*)|^2 \frac{\Gamma}{(W - M_{N^*})^2 + \Gamma^2/4}$$

where M_{N^*} is the resonance mass, with width Γ and observed invariant mass W.

Juan F. González Hernández

Some aspects of neutrino phenomenology

Index Motivations Neutrinos ν -N cross-sections in the SM

SM Neutrino Oscillations

illations $\beta\beta$ decay CO

ay CONCLUSIONS

Deep Inelastic Scattering CS

CC DIS CS

$$\frac{d^2 \sigma_{CC}^{\nu N, \bar{\nu} N}}{dx dy} = \sigma_{CC}^0 \left[x y^2 F_1 + (1 - y) F_2 \pm x y \left(1 - \frac{y}{2} \right) F_3 \right]$$

NC DIS CS

$$\frac{d^2 \sigma_{NC}^{\nu N, \bar{\nu} N}}{dx dy} = \sigma_{NC}^0 \left[x y^2 F_1^{ZN} + (1-y) F_2^{ZN} \pm x y F_3^{ZN} \right]$$

Note:

$$\sigma_{CC}^{0} \simeq \frac{G_{F}^{2}}{\pi} m_{N} E_{\nu} \simeq 1.58 \times 10^{-38} \left(\frac{E_{\nu}}{\text{GeV}}\right) \text{cm}^{2} \underbrace{\simeq}_{Q^{2} < < m_{N}^{2}} \sigma_{NC}^{0} \sim G_{F}^{2} s$$

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Coherent ν N cross-section(I): coherence conditions

- The transferred momentum to every nucleon is small enough that the nucleon remains bound in the nucleus.
- There is no transference of any quantum number, since it would spoil coherence otherwise.
- For scattering angles $\theta > 0$, processes are suppressed by $\sin^2 \theta \le (R\nu)^{-2}$, with $\nu = E E'$ the difference energy before and after the coherent scattering.
- For convenience, a coherence length is introduced to be

$$l_c = \Delta t_c \simeq rac{2
u}{Q^2 + m^2}$$

where m is the real hadron state mass. Note that if this coherence length is greater than the nucleus radius target, the weak current will behave like a real hadron current.

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Coherent ν N cross-section(II): NC elastic case

NC elastic CS

$$\sigma^{coh}_{SM,total} = \frac{G_F^2}{4\pi} E_{\nu}^2 \left[Z(1 - 4\sin^2\theta_w) - N \right]^2 |f(q)|^2$$

NC elastic CS in numbers

$$\sigma_{total}^{coh} \approx \frac{G_F^2 E_{\nu}^2}{4\pi} N^2 |f(q)|^2 = 4.2 \cdot 10^{-45} N^2 \left(\frac{E_{\nu}}{1 \text{MeV}}\right)^2 |f(q)|^2 \text{cm}^2$$

ヘロン ヘロン ヘビン ヘビン

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Coherent ν N cross-section(III): coherent pion models

Rein-Sehgal COH π

$$\frac{d^3\sigma}{dxdydt} = \frac{G_F^2 f_\pi^2 m_N E_\nu}{2\pi^2} (1-y) A^2 \left(\frac{m_A^2 (1+r^2)}{Q^2 + m_A^2}\right) \frac{\left(\sigma_{tot}^{\pi N}\right)^2}{16\pi} e^{-b|t|} F_{abs}$$

Belkov-Kopeliovich $COH\pi$

$$\frac{d^{3}\sigma}{dxdydt} = \frac{G_{F}^{2}A^{2}f_{\pi}^{2}m_{N}E_{\nu}}{2\pi^{2}}(1-y)\frac{m_{A}^{2}(1+r^{2})}{Q^{2}+m_{A}^{2}}\frac{\left(\sigma_{tot}^{\pi A}\right)^{2}}{16\pi}e^{-B_{T}|t'|}e^{-B_{L}|t_{min}|}$$

イロト イヨト イヨト イヨト

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Some Plots

< 口 > < 回 > < 回 > < 回 > < 回 > <

Э

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Some Plots(II)

Juan F. González Hernández Some aspects of neutrino phenomenology

イロン 不同と 不同と 不同と

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Prospects in ν N CS experiments

- CCQE and NCE CS are well understood and provide useful information.Nuclear form factors are the problem.
- Resonance models and COH pion processes are less understood. Elastic NC COH events have not been observed yet.
- RS fails to produce good fits at low energy beams and light nuclei. Theoretical challenge to build new models!
- Recently, SciBooNE reported:

$$\sigma_{CC}^{coh\pi}/\sigma_{NC}^{coh\pi} = 0.14^{+0.30}_{-0.28}$$

PCAC naturally produces a ratio $1.5 \sim 2$ from the isospin factor. SciBooNE claimed no known model can reproduce the data.

- 3 ν -N cross-sections in the SM
- 4 Neutrino Oscillations
- **5** $\beta\beta$ decay
- 6 CONCLUSIONS

(1日) (日) (日)

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Neutrino mixing/Neutrino oscillations

Fact and experimental well established phenomenon: flavor eigenstates \neq mass eigenstates \rightarrow neutrino mixing!

Mixing matrix

$$\nu_{IL}(x) = \sum_{i} U_{li} \nu_{iL}(x)$$

Parameters: $N_{\theta} = \frac{n(n-1)}{2}, n_{\phi}^{D} = \frac{(n-1)(n-2)}{2}, n_{\phi}^{M} = \frac{n(n-1)}{2}$ Types of oscillation: oscillations in vacuum, oscillations in matter. Oscillation amplitudes: $A(x, t) \rightarrow P(x, t) = |A(x, t)|^2$

・ロン ・回 と ・ 回 と ・ 回 と

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS PMNS standard parametrization

The PDG uses the mixing matrix decomposition:

$$U^{D} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

Including the Majorana phases:

$$U = U^{D} S^{M}(\alpha) = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$S^{M}(\alpha) = diag(e^{i\alpha_{1}}, e^{i\alpha_{2}}, e^{i\alpha_{3}})$$

→ ∃ →

Fractional Flavor Content

central values θ_{12} , θ_{23} max. for θ_{13} and $|\sin \delta| = 1$

- 4 回 2 - 4 □ 2 - 4 □

Index Motivations Neutrino ν-N cross-sections in the SM Neutrino ββ decay Oscillations in vacuum(I): basic quantities

$$E_{k} = \sqrt{p^{2} + m_{k}^{2}} \simeq E_{k} + \frac{m_{k}^{2}}{2p} \rightarrow \Delta E = E_{k} - E_{i} \simeq \frac{\Delta m_{ki}^{2}}{2E}$$
$$\Delta m_{ki}^{2} = m_{i}^{2} - m_{k}^{2} \rightarrow (E_{k} - E_{i}) t \simeq \frac{\Delta m_{ki}^{2}}{2} \frac{L}{E} = \frac{\Delta m_{ki}^{2}}{2E} L$$
$$\frac{\Delta m_{ji}^{2}}{2E} L = \frac{c^{4}}{\hbar c} \frac{\Delta m_{ji}^{2}}{2E} L = 1.267 \frac{\Delta m_{ji}^{2}}{1 eV^{2}} \frac{L}{1 km} \frac{1 \text{GeV}}{E} = 1.267 \frac{\Delta m_{ji}^{2}}{1 eV^{2}} \frac{L}{1 m} \frac{1 \text{MeV}}{E}$$
Oscillation length:

CONCLUSIONS

(1日) (日) (日)

Э

$$L_{osc} = \lambda_{osc} = 4\pi \frac{E}{\Delta m^2} = 4\pi \frac{E\hbar c}{c^4 \Delta m^2} = 2.47 \frac{E}{\Delta m^2} \text{ m}$$

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Oscillations in vacuum(II): some common formulae

Atmospheric neutrino formula:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{23}^2}{4E}L\right)$$

Solar neutrino formula:

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{12}^2}{4E}L\right)$$

Reactor neutrino formula:

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2}{4E}L\right)$$

Accelerator formula:

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{32}^{2}}{4E}L\right) + O\left(\frac{\Delta m_{12}^{2}}{\Delta m_{23}^{2}}\right)$$

• E • • E •

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Oscillations in matter with constant density

- In the presence of matter, neutrinos acquire effective masses and exhibit particularly interesting oscillation patterns(MSW effect).
- Oscillations in matter distinguish complementary oscillation angles and show resonance effect(oscillation amplitude can be maximal whatever the mixing angle in vacuum is).
- Importance: $\theta_{13} > 0$ implies that the resonance condition is relevant for atmospheric neutrinos

$$\sqrt{2}G_F N_e \mp \frac{\Delta m^2}{2E} \cos 2\theta = 0 \Longrightarrow \sin^2 \theta_m = 0 \to \Delta m_m^2 = \Delta m^2 \sin 2\theta$$

Resonance energy: $E_{\nu} \sim \frac{\Delta m^2}{\sqrt{2}G_F N_e} = 3\text{GeV} \frac{\Delta m^2}{10^{-3}\text{eV}^2} \frac{1.5\text{g/cm}^3}{\rho Y_e}$

- From KAMLAND and a solar neutrino global fit, we get: $\sin^2(2\theta_{12}) = 0.861^{+0.026}_{-0.022}$, $\Delta m_{12}^2 = \Delta m_{solar}^2 = 7.59^{+0.20}_{-0.21} \cdot 10^{-5} \text{eV}^2$
- Atmospheric neutrino yields (sign of Δm_{23}^2 is unknown): $\sin^2(2\theta_{23}) > 0.92, CL = 90\%$ $\Delta m_{23}^2 = \Delta m_{atm}^2 = 2.43 \pm 0.13 \cdot 10^{-3} \text{eV}^2$ CL = 68%
- Reactor neutrino provides: $sin^2(2\theta_{13}) < 0.15$, CL = 90%

The absolute scale of neutrino masses or their Majorana character are also unknown from neutrino oscillation results. Hints of a non-zero θ_{13} have appeared in T2K and MINOS, this year 2011.

・ 同 ト ・ ヨ ト ・ ヨ ト

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Bounds on oscillation parameters (2010 data)

Juan F. González Hernández

Some aspects of neutrino phenomenology

- 3 ν -N cross-sections in the SM
- 4 Neutrino Oscillations
- **5** $\beta\beta$ decay
- 6 CONCLUSIONS

(人間) (人) (人) (人) (人)

SM double beta decay

$$(Z, A) \to (A, Z+2) + e^{-} + e^{-} + \nu_e + \nu_e$$

If the neutrino is a Majorana particle, then neutrinoless double beta decay:

$$(A, Z) \rightarrow (A, Z + 2) + 2e^-$$

 $(A, Z) \rightarrow (A, Z + 2) + 2e^- + \mathcal{M}$
 $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\mathcal{M}$

・ロン ・聞と ・ほと ・ほと

3

ν -N cross-sections in the SM Neutrinoless double beta decay and effective mass

$$\begin{split} \mathcal{K}^{+} &\to \pi^{-} + \mu^{+} + \mu^{+} \ , \mathcal{K}^{+} \to \pi^{-} + e^{+} + e^{+} \ , \mathcal{K}^{+} \to \pi^{-} + \mu^{+} + e^{+} \\ \mu^{-} + (\mathcal{A}, Z) \to (\mathcal{A}, Z - 2) + e^{+} \\ \tau^{-} \to e^{+} + \pi^{-} + \pi^{-}, \tau^{-} \to \mu^{+} + \pi^{-} + \pi^{-}, \tau^{-} \to e^{+} + \pi^{-} + \mathcal{K}^{-} \end{split}$$

Neutrino Oscillations

 $\beta\beta$ decay

CONCLUSIONS

$\beta\beta$ 0 ν decay rate

Index

Motivations

Neutrinos

$$\Gamma^{\beta\beta0\nu} = \frac{1}{T_{1/2}^{\beta\beta0\nu}} = |m_{\beta\beta}|^2 |M^{\beta\beta0\nu}|^2 G^{\beta\beta0\nu}(Q,Z)$$

Effective mass:

$$m_{\beta\beta} = \sum_{i} U_{ei}^2 m_i$$

Juan F. González Hernández

Some aspects of neutrino phenomenology

白 と く ヨ と く ヨ と …

Э

- Complementary information to neutrino oscillation experiments.
- Required to determine the mass spectrum kind under certain conditions (both theory and experiment).

For NH:
$$|m_{\beta\beta}| \simeq \left| \sin^2 \theta_{12} \sqrt{\Delta m_{12}^2} + \sin^2 \theta_{13} \sqrt{\Delta m_{23}^2} \right| \lesssim 5.3 \cdot 10^{-3} \text{eV}$$

For IH: $1.8 \cdot 10^{-2} \le |m_{\beta\beta}| \le 4.9 \cdot 10^{-2}$ eV

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS β_{0ee} and absolute mass bounds

- The most known bound for the electron neutrino mass is the one from the Mainz and Troitsk data. It yields: $m_e < 2.2 \text{eV}$. The double beta decay $\beta\beta0\nu$ measurement is very hard and challenging. It is also highly dependent from the chosen method and isotope.
- From IGEX $({}^{76}Ge):|m_{\beta\beta}| < 0.3 1.2$ eV CL = 90%. From CUORICINO $({}^{130}Te):|m_{\beta\beta}| < 0.19 - 0.68$ eV CL = 90%From Heidelberg-Moscow $({}^{76}Ge):|m_{\beta\beta}| < 0.3 - 1.3$ eV CL = 90%.
- From NEMO-3 (${}^{96}Zr$) we get the 2010 bound: $|m_{\beta\beta}| < 7.2 19.5$ eV CL = 90%.

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS β_{0ee} and absolute mass plots

・ロン ・回 と ・ヨン ・ヨン

Э

- 3 ν -N cross-sections in the SM
- 4 Neutrino Oscillations
- **5** $\beta\beta$ decay
- **6** CONCLUSIONS

(4回) (1日) (日)

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS The neutrino window(I)

Neutrino physics has a promising present and future. Some ideas for present an future νN scattering:

- CC events are sensitive to the nucleon axial mass M_A.
 MINERνA plans to improve its precision.
- NC events can probe the strangeness content of the nucleon. Neutrino as ideal probes of nuclear structure and structure functions.
- Nuclear effects (FSI, correlations, two-body currents,...) must be well understood and it is a highly non trivial task. Some models are in tension with data (e.g.: SciBooNe).
- Low energy CS (around 1 GeV and below) are important to study (SM model predictions and MC are not fully tested there in the neutrino sector). Interface with other searches.

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS The neutrino window(II):forthcoming future

- Reactor: Double CHOOZ, Daya Bay, RENO.
- Accelerator: T2K, MINOS (MiniBooNE,SciBooNE,...NuSonG?).
- Atmospheric/Solar/Neutrino telescopes: IceCube, KM3NET, ANTARES, NESTOR,...
- Supernovae neutrinos, UHECR_ν: Pierre Auger,...
- Double beta decay: CUORE, GERDA, MAJORANA, EXO and superNEMO or KATRIN.
- Develop and research: low energy particle detectors, neutrino superbeams, beta beams, neutrino factories(related to muon colliders...),...

・ 同 ト ・ ヨ ト ・ ヨ ト

- NuTeV
- Reactor
- LSND
- OPERA?
- ...

Ghostly, evasive, light, "dark", anomalous, ubiquitous...neutrinos

Neutrinos are so interesting because we do not know them well enough. We love them because they are so mysterious!

(4月) イヨト イヨト

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS

THANK YOU!

Juan F. González Hernández Some aspects of neutrino phenomenology

ヘロン 人間 とくほど 人間 とう

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS EXTRA SLIDES

BACK-UP SLIDES

Juan F. González Hernández Some aspects of neutrino phenomenology

・ロン ・聞と ・ほと ・ほと

3

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Neutrino detectors/Experiments and energy

イロン イヨン イヨン イヨン

3

・ロン ・聞と ・ほと ・ほと

Э

Mohapatra on double beta decay and neutrino masses

Neutrino Oscillations $\beta\beta$ decay

CONCLUSIONS

${}^{\rm I\!S}$ Sign of Δm^2 , $\beta\beta_{0\nu}$ and KATRIN result can tell us a lot:

 ν -N cross-sections in the SM

Index

Motivations

Neutrinos

$\beta\beta_{0\nu}$	Δm_{32}^2	KATRIN	Conclusion
yes	> 0	yes	Degenerate, Majorana
yes	> 0	No	Degenerate, Majorana
			or normal or heavy exchange
yes	< 0	no	Inverted, Majorana
yes	< 0	yes	Degenerate, Majorana
no	> 0	no	Normal, Dirac or Majorana
no	< 0	no	Dirac
no	< 0	yes	Dirac
no	> 0	yes	Dirac

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Decay effects in oscillations

$$P_{\nu_{\alpha}}^{det} = \langle \nu_{\alpha} | \rho(t) | \nu_{\alpha} \rangle = \sum_{\beta} w_{\beta} \sum_{j,k} U_{\beta j} U_{\beta k}^{*} U_{\alpha k} U_{\alpha j}^{*} e^{+i \frac{\Delta m_{k j}^{2}}{2E} t} e^{-\frac{\Gamma_{j} + \Gamma_{k}}{2}}$$

$$P_{\nu_{\alpha}}^{det} = \sum_{j} |U_{\alpha j}|^2 e^{-\Gamma_j t} \sum_{\beta} w_{\beta} |U_{\beta j}|^2 \rightarrow P_{\nu_{\alpha}}^{det} = \frac{1}{3} \sum_{j} |U_{\alpha j}|^2 e^{-\Gamma_j t}$$

・ロト ・回ト ・ヨト ・ヨト

Э

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Cosmological bound on neutrino masses

Cosmology and neutrinos

$$rac{\sum m_
u}{94 {
m eV}} = \Omega_{DM} h^2 \stackrel{<}{{}_\sim} 0.23 \cdot 0.7^2
ightarrow \sum m_
u \stackrel{<}{{}_\sim} 10 {
m eV}$$

・ロン ・聞と ・ほと ・ほと

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS GZK, Zevatrons, Z bursts in UHECR

Z-burst dip in UHECR spectroscopy $\nu_{UHE} + \nu_{C\nu B} \rightarrow Z \rightarrow \text{hadrons (resonance)}$

$$E_{
u}^{R}=rac{M_{Z}^{2}}{2m_{
u}}pprox4.2\cdot10^{21}\left(rac{\mathrm{eV}}{m_{
u}}
ight)\mathrm{eV}$$

GZK(Greisen-Zatsepin-Kuzmin) cutoff $p + \gamma_{CMB} \rightarrow \Delta \rightarrow p + \pi^0$

$$E_{
u}^{GZK}\simeq 5.0\cdot 10^{20}{
m GeV}$$

・ロン ・回 と ・ 回 と ・ 回 と

3

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Paschos-Wolfenstein DIS formulae

Paschos-Wolfenstein relationships(NuTeV)

$$R^{-} = \frac{\sigma_{NC}^{\nu} - \sigma_{NC}^{\bar{\nu}}}{\sigma_{CC}^{\nu} - \sigma_{CC}^{\bar{\nu}}} = \frac{1}{2} - \sin^{2}\theta_{w}$$
$$R^{+} = \frac{\sigma_{NC}^{\nu} + \sigma_{NC}^{\bar{\nu}}}{\sigma_{CC}^{\nu} + \sigma_{CC}^{\bar{\nu}}} = \frac{1}{2} - \sin^{2}\theta_{w} + \frac{10}{9}\sin^{4}\theta_{w}$$

・ロト ・回ト ・ヨト ・ヨト

Index Motivations Neutrinos ν-N cross-sections in the SM Neutrino Oscillations Seesaw formulae I,II,III

Type I:

$$m_{\nu} = -M_D M_N^{-1} M_D^T$$

• Type II: $m_\nu = \sqrt{2} \mathcal{Y}_\nu v_3 = \frac{\mathcal{Y}_\nu \mu_D v_2^2}{M_\Delta^2}$

• Type III:

$$m_{\nu} = -M_D^T M_{\Sigma}^{-1} M_D$$

A ■

• 3 >

 $\beta\beta$ decay

CONCLUSIONS

KOIDE formulae and generalizations

 ν -N cross-sections in the SM

Neutrinos

Koide formula

Motivations

Index

$$Q = \frac{m_e + m_\mu + m_\tau}{(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2} = \frac{2}{3}$$

Neutrino Oscillations

 $\beta\beta$ decay

CONCLUSIONS

¹/₃ < Q < 1. Mysterious precision. Origin: preonic models.
 ¹/_{3Q} as the squared cosine of the angle between (√m_e, √m_µ, √m_τ) and (1,1,1).

Koide formula for neutrinos (Brannen)

$$\frac{\left(-\sqrt{m_{\nu_{e}}} + \sqrt{m_{\nu_{\mu}}} + \sqrt{m_{\nu_{\tau}}}\right)^{2}}{m_{\nu_{e}} + m_{\nu_{\mu}} + m_{\nu_{\tau}}} = \frac{3}{2}$$

Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS **NEUTRINOS IN FICTION-SCIENCE, YET!**

Index

Motivations

Neutrino Propulsion for Interstellar Spacecraft

J. A. Morgan The Aerospace Corporation, El Segundo, CA 90009, U. S. A.

July 3,1997

Abstract

An exotic spacecraft propulsion technology is described which exploits parity violation in weak interactions. Anisotropic neutrino emission from a polarized assembly of weakly interacting particles converts rest mass directly to spacecraft impulse.

Neutrino Oscillations Motivations Neutrinos ν -N cross-sections in the SM $\beta\beta$ decay Neutrino jokes in the www: abstruse goose

Index

NEW BULE All science fiction DVDs must now include audio commentary by Brian Cox.

(日) (同) (E) (E) (E)

CONCLUSIONS

Index Motivations Neutrinos ν -N cross-sections in the SM Neutrino Oscillations $\beta\beta$ decay CONCLUSIONS Neutrino jokes in the www: abstruse goose(II)

イロン イ部ン イヨン イヨン 三日